Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 105
1.
Mol Oncol ; 18(2): 431-452, 2024 Feb.
Article En | MEDLINE | ID: mdl-38103190

The programmed cell death 1 ligand 1 (PD-L1)/programmed cell death protein 1 (PD-1) axis is primarily associated with immunosuppression in cytotoxic T lymphocytes (CTLs). However, mounting evidence is supporting the thesis that PD-L1 not only functions as a ligand but mediates additional cellular functions in tumor cells. Moreover, it has been demonstrated that PD-L1 is not exclusively localized at the cellular membrane. Subcellular fractionation revealed the presence of PD-L1 in various cellular compartments of six well-characterized head and neck cancer (HNC) cell lines, including the nucleus. Via Western blotting, we detected PD-L1 in its well-known glycosylated/deglycosylated state at 40-55 kDa. In addition, we detected previously unknown PD-L1 variants with a molecular weight at approximately 70 and > 150 kDa exclusively in nuclear protein fractions. These in vitro findings were confirmed with primary tumor samples from head and neck squamous cell carcinoma (HNSCC) patients. Furthermore, we demonstrated that nuclear PD-L1 variant expression is cell-cycle-dependent. Immunofluorescence staining of PD-L1 in different cell cycle phases of synchronized HNC cells supported these observations. Mechanisms of nuclear PD-L1 trafficking remain less understood; however, proximity ligation assays showed a cell-cycle-dependent interaction of the cytoskeletal protein vimentin with PD-L1, whereas vimentin could serve as a potential shuttle for nuclear PD-L1 transportation. Mass spectrometry after PD-L1 co-immunoprecipitation, followed by gene ontology analysis, indicated interaction of nuclear PD-L1 with proteins involved in DNA remodeling and messenger RNA (mRNA) splicing. Our results in HNC cells suggest a highly complex regulation of PD-L1 and multiple tumor cell-intrinsic functions, independent of immune regulation. These observations bear significant implications for the therapeutic efficacy of immune checkpoint inhibition.


B7-H1 Antigen , Head and Neck Neoplasms , Humans , B7-H1 Antigen/metabolism , Cell Cycle , Head and Neck Neoplasms/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Vimentin
2.
Neuromolecular Med ; 25(4): 573-585, 2023 Dec.
Article En | MEDLINE | ID: mdl-37740824

Medulloblastoma (MB) is a heterogeneous group of malignant pediatric brain tumors, divided into molecular groups with distinct biological features and prognoses. Currently available therapy often results in poor long-term quality of life for patients, which will be afflicted by neurological, neuropsychiatric, and emotional sequelae. Identifying novel therapeutic agents capable of targeting the tumors without jeopardizing patients' quality of life is imperative. Rosmarinic acid (RA) is a plant-derived compound whose action against a series of diseases including cancer has been investigated, with no side effects reported so far. Previous studies have not examined whether RA has effects in MB. Here, we show RA is cytotoxic against human Daoy (IC50 = 168 µM) and D283 (IC50 = 334 µM) MB cells. Exposure to RA for 48 h reduced histone deacetylase 1 (HDAC1) expression while increasing H3K9 hyperacetylation, reduced epidermal growth factor (EGFR) expression, and inhibited EGFR downstream targets extracellular-regulated kinase (ERK)1/2 and AKT in Daoy cells. These modifications were accompanied by increased expression of CDKN1A/p21, reduced expression of SOX2, and a decrease in proliferative rate. Treatment with RA also reduced cancer stem cell markers expression and neurosphere size. Taken together, our findings indicate that RA can reduce cell proliferation and stemness and induce cell cycle arrest in MB cells. Mechanisms mediating these effects may include targeting HDAC1, EGFR, and ERK signaling, and promoting p21 expression, possibly through an increase in H3K9ac and AKT deactivation. RA should be further investigated as a potential anticancer agent in experimental MB.


Antineoplastic Agents , Brain Neoplasms , Cerebellar Neoplasms , Medulloblastoma , Humans , Child , Medulloblastoma/drug therapy , Medulloblastoma/pathology , Epidermal Growth Factor/pharmacology , Epidermal Growth Factor/therapeutic use , Proto-Oncogene Proteins c-akt , Quality of Life , Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Cell Proliferation , Cerebellar Neoplasms/drug therapy , ErbB Receptors/metabolism , ErbB Receptors/pharmacology , ErbB Receptors/therapeutic use , Cell Line, Tumor
3.
Purinergic Signal ; 2023 Jul 04.
Article En | MEDLINE | ID: mdl-37402102

Glioblastoma (GB) is the most common primary brain tumor in adults and carries a dismal prognosis, despite the best available treatment. The 2021 WHO Classification of CNS tumors incorporated molecular profiling to better define the characteristics and prognosis of tumor types and subtypes. These recent advances in diagnosis have not yet resulted in breakthrough therapies capable of shifting the treatment paradigm. NT5E/CD73 is a cell surface enzyme that participates in a complex purinergic pathway in synergy with ENTPD1/CD39 producing extracellular adenosine (ADO) from ATP. ADO promotes tumor progression by inducing immunosuppression, stimulating adhesion, invasion, and angiogenesis. In this study, we performed an in silico analysis of 156 human glioblastoma samples in an unexplored public database to investigate the transcriptional levels of NT5E and ENTPD1. The analysis revealed a significant increase in transcription levels of the genes under study in GB samples versus non-tumor brain tissue samples, in concordance with previous studies. High transcriptional levels of NT5E or ENTPD1 were independently related to a decrease in overall survival (p = 5.4e-04; 1.1e-05), irrespective of the IDH mutation status. NT5E transcriptional levels were significantly higher in GB IDH wild-type patients compared to GB IDH-mutant; however, ENTPD1 levels showed no significant difference, p ≤ 0.001. This in silico study indicates the need for a deeper understanding of the purinergic pathway relation to GB development, also inspiring future population studies that could explore ENTPD1 and NT5E not only as prognostic markers but also as potential therapeutic targets.

4.
Front Immunol ; 14: 1183465, 2023.
Article En | MEDLINE | ID: mdl-37292196

Introduction: The tumor microenvironment (TME) of glioblastoma (GB) is characterized by an increased infiltration of immunosuppressive cells that attenuate the antitumor immune response. The participation of neutrophils in tumor progression is still controversial and a dual role in the TME has been proposed. In this study, we show that neutrophils are reprogrammed by the tumor to ultimately promote GB progression. Methods: Using in vitro and in vivo assays, we demonstrate the existence of bidirectional GB and neutrophil communication, directly promoting an immunosuppressive TME. Results and discussion: Neutrophils have shown to play an important role in tumor malignancy especially in advanced 3D tumor model and Balb/c nude mice experiments, implying a time- and neutrophil concentration-dependent modulation. Studying the tumor energetic metabolism indicated a mitochondria mismatch shaping the TME secretome. The given data suggests a cytokine milieu in patients with GB that favors the recruitment of neutrophils, sustaining an anti-inflammatory profile which is associated with poor prognosis. Besides, glioma-neutrophil crosstalk has sustained a tumor prolonged activation via NETs formation, indicating the role of NFκB signaling in tumor progression. Moreover, clinical samples have indicated that neutrophil-lymphocyte ratio (NLR), IL-1ß, and IL-10 are associated with poor outcomes in patients with GB. Conclusion: These results are relevant for understanding how tumor progression occurs and how immune cells can help in this process.


Glioblastoma , Neutrophils , Animals , Mice , Mice, Nude , Signal Transduction , Immunity , Tumor Microenvironment
5.
Mol Cell Biochem ; 2023 Jun 24.
Article En | MEDLINE | ID: mdl-37354361

Pregnancy and lactation are important stages of fetal development. Therefore, this study investigated how different maternal diets offered during gestation and lactation periods affect adipose tissue inflammation and liver tissue oxidative stress of dams and their female offspring. Female BALB/c albino mice (60 days old) were randomized into three groups receiving a standard (CONT), hypercaloric (HD), or restricted (RD) diet during the pregnancy. After birth, female offspring weaned at 21 days were divided into two groups that received a standard or restricted diet (CONT/CONT, CONT/RD, RD/CONT, RD/RD, HD/CONT, and HD/RD) until 100 days old. Histological, oxidative parameters and inflammatory infiltrate of dams' and offspring's liver and adipose tissue were evaluated. HD dams presented non-alcoholic steatohepatitis (NASH) diagnosis and an increase in tumor necrosis factor-alpha (TNF-α) concentrations when compared to the RD and CONT dams, indicating a pro-inflammatory state. High concentrations of malondialdehyde (MDA) formation and catalase (CAT) activity in HD when compared to the CONT in the liver. SOD activity decreased in RD mice compared to CONT, and the SOD/CAT ratio was decreased in the RD and HD in comparison to the CONT. The maternal diet leads to an increase in SOD in RD/RD compared to HD/RD. RD-fed dams showed an increase in inflammatory infiltrates compared to CONT, evidencing changes caused by a restrictive diet. In the HD/CONT offspring, we verified an increase in inflammatory infiltrates in relation to the offspring fed a standard diet. In conclusion, HD, and RD, during pregnancy and lactation, altered the liver and adipose tissues of mothers. Furthermore, the maternal diet negatively impacts the offspring's adipose tissue but does not cause liver damage in these animals in adult life.

6.
Cell Mol Neurobiol ; 43(6): 2939-2951, 2023 Aug.
Article En | MEDLINE | ID: mdl-37055607

Melanoma is the most aggressive type of skin cancer. Brain metastasis is the worst scenario in metastatic melanoma and the treatment options for these patients are limited. Temozolomide (TMZ) is a chemotherapy agent used to treat primary central nervous system tumors. Our objective was to develop chitosan-coated nanoemulsion containing temozolomide (CNE-TMZ) for nasal route administration to melanoma brain metastasis treatment. A preclinical model of metastatic brain melanoma was standardized, and the efficiency of the developed formulation was further determined in vitro and in vivo. The nanoemulsion was done by spontaneous emulsification method and the formulation was characterized by size, pH, polydispersity index, and zeta potential. Culture assessments to determine cell viability were done in the A375 human melanoma cell line. To determine the safety of formulation, healthy C57/BL6 mice were treated with a nanoemulsion without TMZ. The model in vivo used B16-F10 cells implanted by stereotaxic surgery in C57/BL6 mice brains. The results demonstrate that the preclinical model used showed to be useful to analyze the efficiency of new candidate drugs to treat melanoma brain metastasis. The chitosan-coated nanoemulsions with TMZ showed the expected physicochemical characteristics and demonstrated safety and efficacy, reducing around 70% the tumor size compared to control mice, and presenting a tendency in mitotic index reduction, becoming an interesting approach to treat melanoma brain metastasis.


Brain Neoplasms , Chitosan , Melanoma , Humans , Animals , Mice , Temozolomide/pharmacology , Temozolomide/therapeutic use , Dacarbazine/pharmacology , Dacarbazine/therapeutic use , Melanoma/drug therapy , Melanoma/pathology , Melanoma/secondary , Brain Neoplasms/drug therapy , Brain Neoplasms/secondary , Cell Line, Tumor
7.
Immunol Lett ; 256-257: 20-27, 2023.
Article En | MEDLINE | ID: mdl-36958430

Glioblastoma (GB) is the most aggressive type of brain tumor with heterogeneity, strong invasive ability, and high resistance to therapy due to immunosuppressive mechanisms. CD73 is an overexpressed enzyme in GB that acts via two main mechanisms: (1) CD73 acts as an adhesion protein independent of the enzymatic activity or (2) via the catalyses of AMP to adenosine (ADO) generating a strong modulatory molecule that induces alterations in the tumor cells and in the tumor microenvironment cells (TME). Taken together, CD73 is receiving attention during the last years and studies demonstrated its dual potential benefit as a target to GB therapy. Here, we review the roles of CD73 and P1 receptors (ADO receptors) in GB, the impact of CD73 in the immune interactions between tumor and other immune cells, the proposed therapeutic strategies based on CD73 regulation, and discuss the gap in knowledge and further directions to bring this approach from preclinical to clinical use.


5'-Nucleotidase , Brain Neoplasms , Glioblastoma , Humans , Adenosine/metabolism , Brain Neoplasms/therapy , Brain Neoplasms/metabolism , Glioblastoma/therapy , Immunosuppressive Agents , Signal Transduction , Tumor Microenvironment
8.
J Control Release ; 355: 343-357, 2023 03.
Article En | MEDLINE | ID: mdl-36731799

Glioblastoma (GB) is the worst and most common primary brain tumor. Temozolomide (TMZ), an alkylating agent, is widely used for treating primary and recurrent high-grade gliomas. However, at least 50% of TMZ treated patients do not respond to TMZ and the development of chemoresistance is a major problem. Here, we designed a lipid nanoemulsion containing a thermoresponsive polymer (poloxamer 407) aiming to improve TMZ release into the brain via nasal delivery. Increasing amounts of poloxamer 407 were added to preformed nanoemulsions (250 nm-range) obtained by spontaneous emulsification. The influence of the polymer concentration (from 2.5% to 12.5%) and temperature on viscosity was clearly evidenced. Such effect was also noticed on the mucoadhesiveness of formulations, as well as TMZ release rate and retention/permeation through nasal porcine mucosa using Franz-type diffusion cells. From these results, a formulation containing 10% of poloxamer (NTMZ-P10) was selected for further experiments by nasal route. A significantly higher TMZ amount was observed in the brain of rats from NTMZ-P10 in comparison with controls. Finally, our results show that formulation reduced significantly tumor growth by three-fold: 103.88 ± 43.67 mm3 (for NTMZ-P10) and 303.28 ± 95.27 mm3 (control). Overall, these results suggest the potential of the thermoresponsive formulation, administered by the non-invasive nasal route, as a future effective glioblastoma treatment.


Brain Neoplasms , Glioblastoma , Rats , Animals , Swine , Temozolomide/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/pathology , Administration, Intranasal , Poloxamer/therapeutic use , Cell Line, Tumor , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Antineoplastic Agents, Alkylating/therapeutic use
9.
Clin Exp Immunol ; 213(1): 102-113, 2023 07 05.
Article En | MEDLINE | ID: mdl-36752300

Head and neck squamous cell carcinomas (HNSCCs) evade immune responses through multiple resistance mechanisms. Extracellular vesicles (EVs) released by the tumor and interacting with immune cells induce immune dysfunction and contribute to tumor progression. This study evaluates the clinical relevance and impact on anti-tumor immune responses of gene signatures expressed in HNSCC and associated with EV production/release. Expression levels of two recently described gene sets were determined in The Cancer Genome Atlas Head and Neck Cancer cohort (n = 522) and validated in the GSE65858 dataset (n = 250) as well as a recently published single-cell RNA sequencing dataset (n = 18). Clustering into HPV(+) and HPV(-) patients was performed in all cohorts for further analysis. Potential associations between gene expression levels, immune cell infiltration, and patient overall survival were analyzed using GEPIA2, TISIDB, TIMER, and the UCSC Xena browser. Compared to normal control tissues, vesiculation-related genes were upregulated in HNSCC cells. Elevated gene expression levels positively correlated (P < 0.01) with increased abundance of CD4(+) T cells, macrophages, neutrophils, and dendritic cells infiltrating tumor tissues but were negatively associated (P < 0.01) with the presence of B cells and CD8(+) T cells in the tumor. Expression levels of immunosuppressive factors NT5E and TGFB1 correlated with the vesiculation-related genes and might explain the alterations of the anti-tumor immune response. Enhanced expression levels of vesiculation-related genes in tumor tissues associates with the immunosuppressive tumor milieu and the reduced infiltration of B cells and CD8(+) T cells into the tumor.


Extracellular Vesicles , Head and Neck Neoplasms , Papillomavirus Infections , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , CD8-Positive T-Lymphocytes , Papillomavirus Infections/genetics , Head and Neck Neoplasms/genetics , Prognosis , Tumor Microenvironment
10.
Appl Biochem Biotechnol ; 195(7): 4011-4035, 2023 Jul.
Article En | MEDLINE | ID: mdl-36652091

Endophytic fungi are important sources of anticancer compounds. An endophytic fungus was isolated from the medicinal plant Achyrocline satureioides, and molecularly identified as Biscogniauxia sp. (family Xylariaceae) based on partial nucleotide sequences of the internal transcribed spacer genomic region (GenBank Accession No. ON257911). The chemical characterization and cytotoxic properties of secondary metabolites produced by Biscogniauxia sp. were evaluated in a human melanoma cell line (A375). The fungus was grown in potato-dextrose liquid medium for 25 days, and the extracted compounds were subjected to solid-phase fractionation to obtain the purified FDCM fraction, for which the metabolites were elucidated via ultra-performance chromatography coupled to a mass spectrometer. In the present study, 17 secondary metabolites of Biscogniauxia sp., including nine polyketide derivatives, five terpenoids, and three isocoumarins, were putatively identified. This is the first study to report of the ability of Biscogniauxia sp. in the production of isocoumarin orthosporin; the terpenoids nigriterpene A and 10-xylariterpenoid; the polyketide derivatives daldinin C, 7'dechloro-5'-hydroxygriseofulvin, daldinone D, Sch-642305, curtachalasin A, cytochalasin E, epoxycytochalasins Z8, Z8 isomer, and Z17. Furthermore, this study has reported the biosynthesis of Sch-642305 by a Xylariaceae fungus for the first time. FDCM significantly reduced the viability and proliferation of human melanoma cells at half-maximal inhibitory concentrations ​​of 10.34 and 6.89 µg/mL, respectively, and induced late apoptosis/necrosis and cell cycle arrest in G2/M phase after 72 h of treatment. Given its ability to produce unique metabolites with promising cytotoxic effects, Biscogniauxia sp. of A. satureioides may be a reservoir of compounds with important therapeutic applications.


Achyrocline , Antineoplastic Agents , Melanoma , Humans , Achyrocline/chemistry , Plant Extracts/chemistry , Antineoplastic Agents/pharmacology , Cell Line , Melanoma/drug therapy , Fungi
11.
J Nutr Biochem ; 110: 109156, 2022 12.
Article En | MEDLINE | ID: mdl-36255060

Glioblastoma (GBM) is the deadliest primary brain tumor in adults due to the high rate of relapse with current treatment. Therefore, the search for therapeutic alternatives is urgent. Gallic acid (GA), a potent natural antioxidant, has antitumor and modulatory actions on purinergic signaling. In this study, we investigated the cytotoxic effects of GA on the rat GBM (C6) cell line and on astrocyte culture and analyzed its role in regulating oxidative stress and purinergic enzymes involved in GBM proliferation. Cells were exposed to GA from 50 to 400 µM for 24 and/or 48 h. Next, the effect of GA was evaluated in the preclinical model of GBM. Wistar rats were treated with 50 or 100 mg/kg of GA for 15 days, and cerebral and systemic redox status and degradation of adenine nucleotides and nucleosides in circulating platelets, lymphocytes, and serum were evaluated. Our results demonstrated that GA has selective anti-glioma activity in vitro, without inducing cytotoxicity in astrocyte. Furthermore, GA prevented oxidative stress and changes in the hydrolysis of nucleotides in GBM cells. The anti-glioma effect was also observed in vivo, as GA reduced tumor volume by 90%. Interestingly, GA decreased the oxidative damage induced by a tumor in the brain, serum, and platelets, and, also prevented changes in the degradation of nucleotides and nucleosides in lymphocytes, platelets, and serum. These results indicate, for the first time, the therapeutic potential of GA in a preclinical model of GBM, whose effects may be related to its role in redox and purinergic modulation.


Brain Neoplasms , Glioblastoma , Glioma , Animals , Rats , Glioblastoma/metabolism , Gallic Acid/pharmacology , Gallic Acid/therapeutic use , Rats, Wistar , Glioma/drug therapy , Brain Neoplasms/metabolism , Oxidation-Reduction , Homeostasis , Nucleotides/metabolism , Cell Line, Tumor
12.
Cancers (Basel) ; 14(19)2022 Oct 06.
Article En | MEDLINE | ID: mdl-36230810

Colorectal cancer (CRC) is among the most common cancers and exhibits a high fatality rate. Gut inflammation is related to CRC, with loss of homeostasis in immune cell activities. The cells of the innate and adaptive immune system, including macrophages, neutrophils, mast cells, and lymphocytes, are present in most solid tumors. Purinergic signaling allows for communication between immune cells within the tumor microenvironment (TME) and can alter the TME to promote tumor progression. This system is regulated by the availability of extracellular purines to activate purinoceptors (P1 and P2) and is tightly controlled by ectonucleotidases (E-NPP, CD73/CD39, ADA) and kinases, which interact with and modify nucleotides and nucleosides availability. In this review, we compiled articles detailing the relationship of the purinergic system with CRC progression. We found that increased expression of CD73 leads to the suppression of effector immune cell functions and tumor progression in CRC. The P1 family purinoceptors A1, A2A, and A2B were positively associated with tumor progression, but A2B resulted in increased cancer cell apoptosis. The P2 family purinoceptors P2X5, P2X7, P2Y2, P2Y6, and P2Y12 were factors primarily associated with promoting CRC progression. In summary, CD39/CD73 axis and the purinergic receptors exhibit diagnostic and prognostic value and have potential as therapeutic targets in CRC.

13.
Metab Brain Dis ; 37(6): 1875-1886, 2022 08.
Article En | MEDLINE | ID: mdl-35556196

The excessive production of pro-inflammatory mediators, characteristic of obesity, leads to neuroinflammation. Zinc (Zn) and the branched-chain amino acids (BCAA) are supplements known for their immunomodulatory properties. Our goal was to evaluate if Zn or BCAA supplementation can affect long-term recognition memory and neuroinflammatory parameters of obese rats after a high-fat diet (HFD). Three-month-old Wistar rats were divided into six groups: Standard diet (SD) + vehicle; SD + Zn; SD + BCAA; High-fat diet (HFD) + vehicle; HFD + Zn; and HFD + BCAA. Diets were administrated for 19 weeks, Zn (1,2 mg/kg/day) or BCAA (750 mg/kg/day) supplementation was conducted in the last 4 weeks. Long-term recognition memory was evaluated by the novel object recognition test. IL-1ß immunoreactivity in the cortex and hippocampus, and IL-6 levels in the cortex tissue were assessed. Astrogliosis were evaluated through GFAP + cell count and morphological analysis (Sholl Method). Zn supplementation improved object recognition memory in HFD-fed rats, which was not observed following BCAA supplementation. The levels of IL-6 in the cerebral cortex were higher after HFD, which was not diminished after neither supplementation. Obesity also led to increased IL-1ß immunoreactivity in the cerebral cortex and hippocampus, which was reduced by Zn. BCAA supplementation also diminished IL-1ß immunoreactivity, but only in the hippocampus. We also showed that astrocyte reactivity caused by HFD is area-dependent, being the cerebral cortex more susceptible to the diet. Even though BCAA and Zn can affect IL-1ß immunoreactivity and astrocyte morphology, only Zn improved memory. Future studies are needed to clarify the pathways by which Zn improves cognition in obesity.


Amino Acids, Branched-Chain , Zinc , Amino Acids, Branched-Chain/pharmacology , Amino Acids, Branched-Chain/therapeutic use , Animals , Diet, High-Fat/adverse effects , Dietary Supplements , Inflammation/drug therapy , Interleukin-6 , Obesity/drug therapy , Rats , Rats, Wistar , Zinc/pharmacology
14.
Int J Pharm ; 617: 121584, 2022 Apr 05.
Article En | MEDLINE | ID: mdl-35202726

Malignant glioblastoma (GB) is the predominant primary brain tumour in adults, but despite the efforts towards novel therapies, the median survival of GB patients has not significantly improved in the last decades. Therefore, localised approaches that treat GB straight into the tumour site provide an alternative to enhance chemotherapy bioavailability and efficacy, reducing systemic toxicity. Likewise, the discovery of protein targets, such as the NIMA-related kinase 1 (Nek1), which was previously shown to be associated with temozolomide (TMZ) resistance in GB, has stimulated the clinical development of target therapy approaches to treat GB patients. In this study, we report an electrospun polyvinyl alcohol (PVA) microfiber (MF) brain-implant prepared for the controlled release of Nek1 protein inhibitor (iNek1) and TMZ or TMZ-loaded nanoparticles. The formulations revealed adequate stability and drug loading, which prolonged the drugs' release allowing a sustained exposure of the GB cells to the treatment and enhancing the drugs' therapeutic effects. TMZ-loaded MF provided the highest concentration of TMZ within the brain of tumour-bearing rats, and it was statistically significant when compared to TMZ via intraperitoneal (IP). All animals treated with either co-therapy formulation (TMZ + iNek1 MF or TMZ nanoparticles + iNek1 MF) survived until the endpoint (60 days), whereas the Blank MF (drug-unloaded), TMZ MF and TMZ IP-treated rats' median survival was found to be 16, 31 and 25 days, respectively. The tumour/brain area ratio of the rats implanted with either MF co-therapy was found to be reduced by 5-fold when compared to Blank MF-implanted rats. Taken together, our results strongly suggest that Nek1 is an important GB oncotarget and the inhibition of Nek1's activity significantly decreases GB cells' viability and tumour size when combined with TMZ treatment.


Brain Neoplasms , Glioblastoma , Nanoparticles , Animals , Antineoplastic Agents, Alkylating , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Survival , Glioblastoma/metabolism , Humans , NIMA-Related Kinase 1 , Rats , Temozolomide/pharmacology
15.
Stem Cell Rev Rep ; 18(4): 1495-1509, 2022 04.
Article En | MEDLINE | ID: mdl-34403074

Many studies have shown that mesenchymal stromal cells (MSCs) and their secreted factors may modulate the biology of tumor cells. However, how these interactions happen in vivo remains unclear. In the present study, we investigated the effects of rat adipose-derived stromal cells (ADSCs) and their conditioned medium (ADSC-CM) in glioma tumor growth and malignancy in vivo. Our results showed that when we co-injected C6 cells plus ADSCs into the rat brains, the tumors generated were larger and the animals exhibited shorter survival, when compared with tumors of the animals that received only C6 cells or C6 cells pre-treated with ADSC-CM. We further showed that the animals that received C6 plus ADSC did not present enhanced expression of CD73 (a gene highly expressed in ADSCs), indicating that the tumor volume observed in these animals was not a mere consequence of the higher density of cells administered in this group. Finally, we showed that the animals that received C6 + ADSC presented tumors with larger necrosis areas and greater infiltration of immune cells. These results indicate that the immunoregulatory properties of ADSCs and its contribution to tumor stroma can support tumor growth leading to larger zones of necrosis, recruitment of immune cells, thus facilitating tumor progression. Our data provide new insights into the way by which ADSCs and tumor cells interact and highlight the importance of understanding the fate and roles of MSCs in tumor sites in vivo, as well as their intricate crosstalk with cancer cells.


Glioblastoma , Adipose Tissue/metabolism , Animals , Culture Media, Conditioned/metabolism , Culture Media, Conditioned/pharmacology , Glioblastoma/genetics , Glioblastoma/therapy , Necrosis , Rats , Stromal Cells/metabolism
16.
Med Chem ; 18(4): 452-462, 2022.
Article En | MEDLINE | ID: mdl-34365956

AIMS: The purpose of our study was to explore the molecular hybridization between 2- imino-4-thizolidione and piridinic scaffolds and its potential antitumor activity. BACKGROUND: Glioblastoma is the most aggressive glioma tumor clinically diagnosed malignant and highly recurrent primary brain tumor type. The standard of treatment for a glioblastoma is surgery, followed by radiation and chemotherapy using temozolomide. However, the chemoresistance has become the main barrier to treatment success. 2-imino-4-thiazolidinones are an important class of heterocyclic compounds that feature anticancer activity; however the antiglioblastoma activity is yet to be explored. OBJECTIVE: To synthesize and characterize a series of novel 2-imino-4-thiazolidinones and evaluate their antiglioblastoma activity. METHODS: The 2-imino-4-thiazolidinone (5a-p) was synthesized according to the literature with modifications. Compounds were identified and characterized using spectroscopic analysis and X-ray diffraction. The antitumor activity was analyzed by 3-(4,5- dimethyl)-2,5-diphenyltetrazolium bromide (MTT) assay both in primary astrocyte and glioma (C6). Apoptosis and cell cycle phase were determined by flow cytometry analysis. The expression of caspase-3/7 was measured by luminescence assay. Oxidative stress parameters as: Determination of Reactive Oxygen Species (ROS), Superoxide Dismutase (SOD) activity, Catalase (CAT) activity and total sulfhydryl content quantification were analyzed by colorimetric assays according to literature. RESULTS: Among sixteen synthesized compounds, three displayed potent antitumor activities against tested glioblastoma cell line showed IC50 values well below the standard drug temozolomide. Therefore, compounds 5a, 5l and 5p were evaluated using cell cycle and death analysis, due to potent toxicity (2.17±1.17, 6.24±0.59, 2.93±1.12µM, respectively) in C6 cell line. The mechanism of action studies demonstrated that 5a and 5l induced apoptosis significantly increase the percentage of cells in Sub-G1 phase in the absence of necrosis. Consistent with these results, caspase-3/7 assay revealed that 5l presents pro-apoptotic activity due to the significant stimulation of caspases-3/7. Moreover, 5a, 5l and 5p increased antioxidant defense and decreased reactive oxygen species (ROS) production. CONCLUSION: The compounds were synthesized with good yield and three of these presented (5a, 5l and 5p) good cytotoxicity against C6 cell line. Both affected cell cycle distribution via arresting more C6 cell line at Sub-G1 phase promoting apoptosis. Furthermore, 5a, 5l and 5p modulated redox status. These findings suggest that these compounds can be considered as promising lead molecules for further development of potential antitumor agents.


Antineoplastic Agents , Glioblastoma , Glioma , Antineoplastic Agents/chemistry , Apoptosis , Cell Line, Tumor , Cell Proliferation , Glioblastoma/drug therapy , Humans , Reactive Oxygen Species/metabolism
17.
Purinergic Signal ; 17(4): 713-724, 2021 12.
Article En | MEDLINE | ID: mdl-34604944

Sepsis is life-threatening organ dysfunction caused by a dysregulated inflammatory and immune response to infection. Sepsis involves the combination of exaggerated inflammation and immune suppression. During systemic infection and sepsis, the liver works as a lymphoid organ with key functions in regulating the immune response. Extracellular nucleotides are considered damage-associated molecular patterns and are involved in the control of inflammation. Their levels are finely tuned by the membrane-associated ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) enzyme family. Although previous studies have addressed the role of NTPDase1 (CD39), the role of the other extracellular NTPDases, NTPDase2, -3, and -8, in sepsis is unclear. In the present studies we identified NTPDase8 as a top downregulated gene in the liver of mice submitted to cecal ligation-induced sepsis. Immunohistochemical analysis confirmed the decrease of NTPDase8 expression at the protein level. In vitro mechanistic studies using HepG2 hepatoma cells demonstrated that IL-6 but not TNF, IL-1ß, bacteria, or lipopolysaccharide are able to suppress NTPDase8 gene expression. NTPDase8, as well as NTPDase2 and NTPDase3 mRNA was downregulated, whereas NTPDase1 (CD39) mRNA was upregulated in polymorphonuclear leukocytes from both inflamed and septic patients compared to healthy controls. Although the host's inflammatory response of polymicrobial septic NTPDase8 deficient mice was no different from that of wild-type mice, IL-6 levels in NTPDase8 deficient mice were higher than IL-6 levels in wild-type mice with pneumonia. Altogether, the present data indicate that extracellular NTPDases are differentially regulated during sepsis.


Adenosine Triphosphatases/metabolism , Inflammation/metabolism , Leukocytes/metabolism , Sepsis/metabolism , Adenosine Triphosphatases/genetics , Animals , Female , Humans , Inflammation/genetics , Liver/metabolism , Male , Mice , Mice, Knockout , Sepsis/genetics
18.
Cytokine Growth Factor Rev ; 61: 16-26, 2021 10.
Article En | MEDLINE | ID: mdl-34479816

Neutrophils are the first line of defense against tissue injury and play an important role in tumor progression. Tumor-associated neutrophils (TANs) mediate pro-tumor immunosuppressive activity and their infiltration into tumors is associated with poor outcome in a variety of malignant diseases. The tumor cell-neutrophil crosstalk is mediated by small extracellular vesicles (sEVs) also referred to as exosomes which represent a major mechanism for intercellular communication. This review will address the role of neutrophil-derived sEVs (NEX) in reprogramming the TME and on mechanisms that regulate the dual potential of NEX to promote tumor progression on one hand and suppress tumor growth on the other. Emerging data suggest that both, NEX and tumor-derived sEVs (TEX) carry complex molecular cargos which upon delivery to recipient cells in the tumor microenvironment (TME) modulate their behavior and reprogram them to mediate pro-inflammatory or immunosuppressive responses. Although it remains unknown how the balance between the often conflicting signaling of TEX and NEX is regulated, this review is an attempt to provide insights into mechanisms that underpin this complex bidirectional crosstalk. A better understanding of the signals NEX process or deliver in the TME might lead to the development of novel approaches to the control of tumor progression in the future.


Exosomes , Extracellular Vesicles , Cell Communication , Neutrophils , Tumor Microenvironment
19.
Pharmaceutics ; 13(8)2021 Aug 12.
Article En | MEDLINE | ID: mdl-34452202

Achyrocline satureioides (Lam.) DC Asteraceae extracts (ASEs) have been investigated for the treatment of various skin disorders. This study reports the effects of ASE-loaded nanoemulsions (NEASE) on the cellular viability, death by necrosis, and migration of immortalized human keratinocytes (HaCaT cell line), as well as the irritant potential through the hen's egg chorioallantoic membrane test (HET-CAM). NEASE exhibited a polydispersity index above 0.12, with a droplet size of 300 nm, ζ-potential of -40 mV, and content of flavonoids close to 1 mg/mL. No cytotoxicity of the ASE was observed on HaCaT by MTT assay (up to 10 µg/mL). A significant increase of HaCaT viability was observed to NEASE (up to 5 µg/mL of flavonoids), compared to treatment with the ASE. The necrosis death evaluation demonstrated that only NEASE did not lead to cell death at all the tested concentrations. The scratch assay demonstrated that NEASE was able to increase the cell migration at low flavonoid concentrations. Finally, the HET-CAM test proved the non-irritative potential of NEASE. Overall, the results indicate the potential of the proposed formulations for topical use in wound healing, in view of their promising effects on proliferation and migration in keratinocytes, combined with an indication of the absence of cytotoxicity and non-irritating potential.

20.
J Immunol ; 206(9): 1983-1990, 2021 05 01.
Article En | MEDLINE | ID: mdl-33879578

Nucleoside triphosphate diphosphohydrolases (NTPDases) are a family of enzymes that hydrolyze nucleotides such as ATP, UTP, ADP, and UDP to monophosphates derivates such as AMP and UMP. The NTPDase family consists of eight enzymes, of which NTPDases 1, 2, 3, and 8 are expressed on cell membranes thereby hydrolyzing extracellular nucleotides. Cell membrane NTPDases are expressed in all tissues, in which they regulate essential physiological tissue functions such as development, blood flow, hormone secretion, and neurotransmitter release. They do so by modulating nucleotide-mediated purinergic signaling through P2 purinergic receptors. NTPDases 1, 2, 3, and 8 also play a key role during infection, inflammation, injury, and cancer. Under these conditions, NTPDases can contribute and control the pathophysiology of infectious, inflammatory diseases and cancer. In this review, we discuss the role of NTPDases, focusing on the less understood NTPDases 2-8, in regulating inflammation and immunity during infectious, inflammatory diseases, and cancer.


Adenosine Triphosphatases/genetics , Gene Expression Regulation, Enzymologic , Immunity/genetics , Inflammation/genetics , Multigene Family , Neoplasms/genetics , Adenosine Triphosphatases/metabolism , Animals , Humans , Inflammation/enzymology , Isoenzymes/genetics , Isoenzymes/metabolism , Neoplasms/enzymology , Nucleotides/metabolism
...